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ABSTRACT

A system consisting of a linear element G(s) and a time-varying gain n(.)

is considered. It is assumed that this system is stable for all constant gains in .
the sector{[0,k] (i.e., forn(t)z2 4, 0< £ < k). Itis then shown that the system

is stable for all n(-) in that sector satisfying

for some K > .0 andallt > 0,

Here o is a constant determined by an equation involving (inversely) the
derivative of the phase function Arg {G(iw) + l/k} . The proof follows what
are by now established lines in employing a "rﬁultiplier" operator. However

a method is used to eliminate any "multiplier' dependence from the final re-

sults, so that these results are explicit and geometric,

a -1-




1. INTRODUCTION

Many of the early '"frequency domain' stability criteria afforded simple
geometric interpretations. These criteria assured stability on the basis of the
‘plot of a Nyquist curve and its position with respect to some other line or geo-
metric figure. (Consider for instance the ""Popov Criterion' or the '""Circle

Criterion". )

Some of the more recent work has resulted in theorems of a less geometric
character. Brockett and Forys [1] considered a feedback system with time-
invariant element G(s) and time-varying element n(-),0 < n(.) < k (see Figure 1)
and concluded that if there exists some Z(s) of the form Z(s) = iéll ai/(s + Bi) with
a, 2 0 and Bi?' o and with Z(s)d:1 [G(s) + 1/k] positive real, then the system
would be stable for all n(-) satisfying n(t)/n(t) < 2¢ (1 - n(t)/k) for t 2 0,

In the context of integral equations, a result of Falb and Zames [2] showed
that for a system consisting of a convolution operator G and a monotone non-
linearity f(-) satisfying 0 = of(c) < kO’Z, stability can be proven if there exists an
operator Z : L, (o, 00)—>L2[0, ©) defined by (Zx) (t) = x(t) + fot zl(t - 1) x(7) dr
where

V 00
zl(')eLl (0,00), f

o

zl(t)l dt <1

and
Re {[Z(iw) + aid] [Gliw) + %]}z 5 >0

for some @ > 0 and all real w. Both 6f the preceding results de-

pend on the existence of a 'multiplier"

linear time
e(t) / invariant operator which, when combined with
‘“) + G(s) -y (1) [G(s) + 1/k], yields a positive operator.
- This idea, expressed as a factorization

property of G(s), first appeared in

Zames [3a]. The usefulness of the

X "multiplier' approach as portrayed in
time-varying gain (11, [2], and [3a], is limited by the
n(t) . absence of any explicit method for

finding suitable "multipliers''.

Figure 1. A Feedback System
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In Freedman and Zames [4] the stability of a system involving a linear time-
invariant element G(s) and a time-varying gain n(-) was considered (as in Figure
1). The method of proof in [4] involved introduction of a "multiplier'" much as in
[2] above. However, a constructive process was developed which allowed for
removal of this ""multiplier" from the final results, so that these results were

geometric in nature,

‘ It is this author's contention that [4] contains the core of a procedure which
can be used to initiate a program aimed at returning more closely to the geometric
character of the earlier results, More explicitly it is felt that the ideas in [4] can
be utilized to remove the '"multiplier'" from many of the more recent stability

results, thus yielding criteria depending only on G(s) and its properties.

For the purpose of this paper the result of Brockett and Forys [1] mentioned
above was considered and a criterion was developed which is free from dependence

on any '"multiplier',

To describe this criterion more fully consider the feedback system repre-
sented by Figure 1, and assume it is stable for all constant gains in sector [0,x}.
Denote by & (w) the phase function Arg {G(iw) + l/k} . Then by the criterion to be
presented here the system will be stable if there is a K > 0 such that

t

1
e/
o

for all t > 0 (and so more weakly if n(t)/n(t) < 2¢ (1 - n(t)/k) or n(t)/n(t) =

20 (I - n(t)/k)) where ¢ is determined by an equation involving (see Figure 2):

n(t)

+ 20
nm -2

t

dt - 2¢ <K

1. The magnitude of the closest approach of & (w) to = .

2. A "cutoff frequency Wv" i.e. a frequency after which.the values of @ (w)

are of no importance in this theory

3. The magnitude of the square integral of the derivative of & (w) over
[-WV’ WV]

One sees therefore that not only the geometric set N = {G(iw) l - o< w<°°}
comes into play here, but also in some sense the ""angular'' rate at which this set

is traced out as  varies (as represented by ®'(w)). In Fact it will appear that




® () & Arg {Sliw) + &}

v

a’

D
D

|
|
I
|
|

T —

-
- (C
(

-

Fi-gure 2. Plot of the Phase Function & (w)

such rates are closely related to the existence and properties of certain

"multipliers."

The crucial lemma on which the theory presented here rests is Lemma 1,
section 4, which shows that a ""multiplier'' operator with any prescribed phase
function can be constructed provided only that its phase function and its deriva-
tive satisfy suitable integrability conditions., This result appeared in [4] (Lemma
2, section 4), and the reader is referred to that paper for the proof. However,

a short sketch of that proof is included here.
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2. THE MAIN PROBLEM AND ITS SOLUTION

DEFINITION: Let Lp[O, ©), wherep =1, 2.., ©, be the linear space of real

valued measurable functions x(-) on [0, %) with the property that

00
f |x(®)| P at <wific p< =,

or x(-) is essentially bounded if p = ©. Let L, [0, o) be normed with the norm

ol = f g "

The spaces Lp (-0, ) on the interval (-», )'are similarly defined.

The definition of the extended space LZe is introduced next. (For a more

complete discussion of such spaces, see [3b].)

DEFINITION: Let L2

x(+) on [0, ») satisfying

e be the space of those real-valued measurable functions

T 2
f | x(t)|® dt <  for all T> o.
(o]

2.1 FEEDBACK EQUATIONS AND STABILITY

The feedback system of Figure 1 will be represented for all t > 0 by the

integral equation

t
e(t) = x(t) - n(t)[f e(T) gt -7 d-r:| (1)

o




or, alternatively the pair:

e(t) = x(t) - n(t) y(t)
" . , _ (2)
y(t) = f e(r) g(t - 7) dr |

o

in which it is assumed that:

‘ 1. x(-)isin L, [0, ©). (The function x(+) represents the combined

effects of an input and of possible non-zero initial conditions.)
2. g(-)isin L [0,2)

3. n(+)is a real-valued function, absolutely continuous on [0,0),
(Since n(-) is absolutely continuous, its derivative n(-) exists

almost everywhere, and

b -
n(b) - n(a) = f n(t) dt

a

for any non-negative real a and b (See Hobson {5], Sect. 406,
ppo 592-593. ) ‘

4. e(+) (and also y(-)) is in LZe (i.e., existence of solutions in LZe
for L2[0,°°) - inputs is being assumed. *
DEFINITION: Feedback system 1 will be termed L2 - stable if for any pair
‘ (x(+), e(-)) for which (1) (or (2)) and the related assumptions 1, 2, 3 and 4 hold,
then e(-) is in L,[0,®), with || e(-)||< const. || x()]] . -

The problem of existence of Ly, solutions will not be discussed in this paper,
except to say that such questions may be settled favorably by various minor
additional hypotheses,
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This notion of stability is natural in the setting of integral equations. In the

context of differential equations it implies asymptotic stability (lim y(t) = 0)
. : t — o
and with additional minor assumptions can also be used to show bounded-input,

bounded-output stability,
2.2 THE MAIN STABILITY THEOREM

This section contains the main stability results. A few definitions and

remarks will provide the setting.

DEFINITION: For any k > 0, let

w, = {f(-)e L,[0,)] Fio) + § A0 for -®<w < andall!, 0<! < k}

where F(s), the Laplace transform of f(-), is the complex-valued function with
domain {s|Re {s} 20} defined, as usual, by the integral

- w t
F(s) = f e St £(t) at;
o]
i.e.,

f(-)e Wk iff the set {F(iw) ! we (=0 , )} does not cut the negative real

axis from - up to and including the point -% .

REMARK 1: The statement ''g(*)e Wk" may be interpreted via the '"'principle of
the argument" to be equivalent to the statement: "The equation G(s) = - %{- has
no complex roots in Re {s} >0." Also the classical Nyquist Criterion assures

that ""g(+) in Wk” is a necessary and sufficient condition for feedback system (1)

- to be L,-stable for all constant gains between 0 and k; i.e., for n(t) = £ where {

is a constant 0_5 1 < k.



REMARK 2 AND SOME SPECIAL NOTATION:  Given g(.) ¢ W

function

K’ define the phase

1. ®(w) 2 Arg {G(iw) + %} . -

Then since G(iw) + 1/k does not cut the negative real axis as passes from . :
- 0 to+ o, it follows that & (w) is uniquely defined for all w, and takes values E
only in (-m, w). Further, since g(-)e L [0 © ) the Riemann-Lebesgue Lemma
assures that |w|1—1>moo G(iw) = 0 and so " %1m Arg {G (iw) + l/k} 0 also. There-
fore a simple continuity argument shows that the function G(iw) + 1/k must have

a '"closest angular approach" @ , to the negative real axis; that is, letting:
2. @ 2 min(r - |2 @)

thenga > 0.

Next let

and define the "cutoff frequency"

4. Wv a min{V;f/ | & (w) I < v for le > W}

Here the existence of Wv is assured by an argument employing the continuity of

‘Q (w) and the fact that l(‘)'ll_llnm ® (w) = 0.

The importance of W is that it represents a frequency value beyond which

information about the phase function ® (w) need not be utilized in the theory to

follow.

fn the remainder of this paper the notation introduced in (1) through (4)

above will be used freely.

The main result may now be stated.

-8-
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THEOREM 1: Suppose Eq. (1) (or equivalently Eqgs. (2)) and the related assump-
tions (1 through 4) hold for a pair (x(+), e(*)). Let k> 0 be given and assume:

1. g(- )eWk (i.e., the system is Lz—stable for n(t)= £ any £, 0 < £ < k)

2. 0<inf n(t) < n(t) < sup n(t) < k. Then:

(a) if I P (w) IS 7/2 for -0 < » < ©, the system is LZ-stable by a simple
possivity argument. (Note that I @ (w)!ls /2 for -© < @ < o implies
Re {G(iw)}z - 1/k for -0 <w < o and the desired result follows

from the basic Popov theorem).

~ On the other hand:

(b) If ® () > w/2 for some w, the '"cutoff frequency" Wv is strictly posi-

tive and one may define

()
16

oy &
f |q>' (w)l dw : : ’
-W
14

where &' (w) denotes the derivative of the phase function & (w).

Suppose then that there exists a constant K> 0 and a constant ¢ in (0, o)

such that

n(t)

- 20)dt - 2¢

<

(3)

| R

j.t

(o]

l'?'lo—n

2o (1 -2




for allt > 0 or else if

n(t)

o (1 -%)'{'20‘

dt - 2¢

j;t

H‘lv—-

< % (4)

for allt > 0. Then e(-) is in LZ[O,OO) and, in fact, lle(-) Il € const. Il x(.)Il.
Therefore System (1) is Lz-stable.

‘ REMARK 3: Theorem 1 is an immediate consequence of Theorem 2, Section 3,

Lemma 3 and Remark 4, Section 4, and Corollary 3, Section 5.

COROLLARY 1I: Under the assumptions and notation of Theorem 1 a sufficient condi-
tion on n(+) for (3) to hold, and hence for Lz-stability, is that

for allt > 0. Similarly the inequality °

R

2

is a sufficient condition for (4) to hold and so also to ensure L,- stability. (See

R.W. Brockett and L.J. Forys [1] for a "multiplier' result along these lines.)
‘ PROOF OF COROLLARY I: Immediate.

COROLLARY 2: Let the hypotheses and notation of Theorem 1 remain valid

except in Case (b) redefine L as follows:

oy 8 (—-——3"“ )2. 1
16\/-.7: max I‘P'(w)lz
-W. = wsW
v v
-10-
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Then with this definition of Ty the conclusions of the Theorem 1 and also of

Corollary 1 remain valid; i.e., System (1) is L_-stable.

2

%
of the original statement.

‘ ! PROOF OF COROLLARY 2: This choice of ¢, is less than or equal to the o

v S11-




3. A THEOREM ON MULTIPLIERS

The following theorem is essentially proved in Zames-Freedman [4] and the
reader is recommended to that paper for the proof. The existence of a multiplier
' operator Z satisfying certain properties with respeét to'~G + %.is hypothesized and
a stability conclusion is then drawn for all time-varying gains n(.) suitably re-

stricted. The result in the form presented below is rather similar to a result in

&3 €G3 &I &N B

Brockett-Forys [1]; however it differs in one sense in that the form of the multi-
plier Z remains unspecified in this paper. Moreover, the key fact to keep in mind
here is that this theorem represents an intermediate stage in the developments
leading to Theorem 1 stated in the previous section, and Theorem 1 contains no

explicit mention of the multiplier.

For what follows the definition of some special operator spaces (actually they

are Banach Algebras) will be of use.

DEFINITION: Let Zcr be the class of operators, H: Lye— L, satisfying
o A

t
(Hx) (t) = by x(t) + f x(r)hy(t - 1) dr

(for all x(-)e LZe [0, ©) and all t > 0) where h‘o is a real constant and hl(') is a

real-valued measurable function on 0, ©) satisfying hl(t) exp (o-ot) € LI[O, ),

For He X the Laplace transform of H is given by
~ 0' ~
o

c0

. H(s) = h0 + f hl(t) e>.cp (-st) dt

o

(for all complex s with Re {s} 2 -0 )

THEOREM 2: Let Eq. (1) (or equivalently Eqs. (2)) and the related assumptions
(1 through 4) hold for a pair (x(-), e(-)). Letk > 0 be given and assume’

0 <inf n(t) < n(t) < sup n(t) <k.

-12-
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Further, let the following two assumptions be made:
l. There is a constant ¢ > 0 and an operator Z e ,2% satisfying, for all real

(1) Re {Zﬁw—c)}zo
(i) Re{ZﬁM[Gﬁm)+%]}26

for some positive constant 6,

The function n*(+) defined by n*(t) é n(t)(l - n_l(:l)—l for allt > 0, or the
reciprocal of this function, may be factored into a product nl(-) . nz(-) of
two absolutely continuous functions on [0, ®); where nl(t) exp (-20t) is
monotone non-increasing while nz(t) is monotone non-decreasing in t, and
0 < inf nl(t) < sup nz(t) < © (and so also 0 < inf nz(t) < sup nz(t) < ),

Then the system (1) is Lz-stable, i.e.,

| e(*) is in L2 [0, x) é.nd le(<) Il < const. lIx(:)Ii

PROOF OF THEOREM 2: See Lemma 1, Zame-Freedman [4]. The factorization
property (imposed on the time-varying gain) hypothesized in 4] is slightly different
from the one made in this present paper, but the proof under the conditions con- »
sidered here‘ follows the same general arguments and is, in fact, a bit easier. For

that reason the reader is referred to [4].

-13-




4. MULTIPLIERS WITH PRESCRIBED PHASE CHARACTERISTICS

In this section three lemmas will be presented which together settle the ques-
-tion of the existence of a suitable multiplier for Theorem 2. Such a rriultiplier will be
seen to always exist and, in fact, an associated range of ¢ values (as required for
the hypothesis of Theorem 2) may be obtained directly from data concerning the

1 . . . .
phase of G(iw) + i without recourse to construction of Z in any given case.

The foundation of the results to follow in this section is Lemma 1 below, which

e N - S ot

| assures the existence of an operator Z ina‘fo_ with any prescribed phase function
. d?o(w) = Arg {Z(i(.o)} provided only the function ‘Po(w) and its derivative @c;(w)

satisfy certain integrability conditions.

LEMMA 1: (OPERATORS WITH PRESCRIBED PHASE)

If:
1. Qo (w) is a real-valued continuous a. e, differentiable odd function of w
for win (-, ) '
2, @, (w) andq:;(w) are in L, (-0, ®),
then
(a) there is a function X (-) in L (-, ) with X (t) = 0 for t < 0 and with a
Laplace transform A (s) satisfying Im{A (i@)} = ‘Po(w)-
(b) there is a y(-) in Ll (-0, %) with y(t) = 0 for t < 0, and with a
Laplace transform Y(s) satisfying 1 + Y(s) = exp [ A (s)] for
Re {s} > 0.
‘ (c) 1If -Tm < <I>o(w) <, there is a y(*)e¢ L1 (=20, ¥ with y(t) = 0 for t <0,
1+ Y(s) £ 0in Re {s} > 0 (so 1 + Y(s) is minimum phase) and
Arg {1 + Y(iw)} -3 (). :
OUTLINE OF PROOF: For the complete proof of this lemma the reader is once

again referred to Zames-Freedman [4]. However a brief outline of the main

ideas is presented here.

~-14-




(1) Let ¢o(t) denote the inverse limit-in-the-mean Fourier transform of

d o(m) and define

’ Zq)o(t) for t =2 0
A(t) =
0 for t < 0

Then it may .be deduced from 1 and 2 that A(.) is in Ll(—°0, ©) and that
the Laplace transform of A(.) denoted A (s) satisfies Im {A(iw)} = ‘I’O(w)

and so (a) above holds.
(ii) Next, for each n =0, let

n
f'—-A—_—\
_ (AFA)(L) (A OEANE)
v, = A(t) + BT + ... ey

where * represents convolution; that is:

o0
(xl*xz)(t)g f x,(t - ™) %,(7) dT.
/o0

Then, for each n, yn(- ) is in Ll[O,.OO) and the Laplace transform of

Yn(' )s Yn(s.) satisfies

) A(s) AR(s)
Yn(s) = A(s).+ 31 + ... :

n|

(iii) Finally it may be shown that yn(o) converges in Ll-norm to a function
y(-) in LI[O’ ©) and the Laplace transform of this function y(.), denoted

Y(s), must satisfy

Y(s) = exp [A(s)]-1 for Re { s} > 0.

From this fact (b) and (¢) of Lemma 1 follow.

-15-




In applying Lemma 1 to the problem of constructing a multiplier Z which will
meet the hypothesés of Theorem 2 it is clear that the larger ¢ may be chosen (with
a correspbnding Z e ‘x;r assured), the less restrictive will be the conditions on n(-).
"A measure of how large a ¢ is possible will be developed via the following lemma,

This lemma in its face concerns the rate of convérgenc:e of the values of the

- harmonic function Im {A(s)} defined on a half plane Re {s} 20as s approaches

Re {s} = 0 along ordinate lines.

LEMMA 2: Under the same notation and assumptions as in the previous theorem,

it follows that for any o > 0.

1
16./5 ° o2 1%
sup | m{Ate +0} -8 @ | <15 [f |2 (w)] dw]

L w < © - 00

and so if -7 < Qo(w).< m for all w and if the principal value of Arg { } is taken,
then: ‘

sup

:Arg{l + Y(iw+o-)} - e _(w) Is 1(?7{& [f°°|q>;(w)|2 dw]

-0 < -00

PROOF OF LEMMA 2: (The proof presented here follows closely the lines of the
singular integral theory of Titchmarsh [6], Sect 116, pp 28-29). For all s with
Re { s }2_ 0 the Laplace transform

w |
Ae) & [ exp (-s) (1) (5)

o

Now let, for the moment,

exp (-st) fort> 0
qlt) = 0 for t < 0,

-16-
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So, for any s with Re{s} >0 the Fourier transform of q(-) is ’{;_14._; . Applying

Parseval's Theorem to (5) results in

iw + s

. L
A(s) = %f — 1 A (e dw | (6)
- 00

However, applying Cauchy's Theorem to the analytic function A (s) yields

0 = L% —1 A do (@)
2w iw +s
> | |
for Re {s}>i0.
Now <I>o(w) = Im {A(iw)} = A(iw) Z-i A (iw) as seen in the previous lemma

and so subtracting (6) from (7) gives:

Aoy = -2 [T e, o) o (8)

-00

for Re{s}>0,

Next, for convenience of notation, letting s = ¢ + iy, s=¢ - iy

and Im{A(s)} = V(o,y), one obtains:

. Po(w) Po(w)
B 1 i [ o] (o} (o]
Viey) =z [—?'f stie  F-ie ]dw

for Re {s}>0

-17-




and so
Ve, y) —‘—f z 2(0) do.
v / 0' + (y + w) ‘ :
for oc>0
or replacing w by -wand noting that & (v) = -<I>d(-w) gives:
. 1 w
Vi, y) = < f < ®_ (w) do
T -°°o-2+(y—w)2 o
for ¢ >0
Next note that for any ye (-o0, o0)
y
1 j‘°° o 1 '/' o _1
— do = — > zdw = z .
v -y 027+(y'— w)z Tdwea +(y - w) _
Therefore:
|
' % ()
lfw 5 o Zé(w)dw-oz
" o t(y - w) ‘

o t(y - w)

%jmz - 2‘[1’0(‘“)"1’0(")]‘1‘*’
y

Now for any ¢ > 0 and any w and y with w # y:

o o
and <

ety -’y - w)?

1A
Qjrm

o +(y - w)

-18-
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Using these relations to bound (10) results in

X | yte Coe e @) -2 (y)
(10) = — | ¢, (w) -2 (Y)Idw +% f I 2 ™ w)z" deo (1)
-yto h

The first integral on the right hand side of (11) satisfies the following chain of

inequalities:

yto : yto

. ;% lcpo(w)-cbo(y)ldwsnlof f |<I>(')(t)|dtdw
y Y
+ 1 ] 1
s%fy U(I: cu|<1>(') ®[? dt:lz (w-y)z)dw < (waQ; ®|° dt)z <. g/z
y y . ' -0
-2 /s ( 3 | f dt)% (12
3w f

The second integral on the right hand side of (11) also satisfies a chain of

inequalities, as follows:

%fw |2, () - 2, 0| oot © | (y+t)2- 20
vto (w-y) - t
.‘ < g > _1_ Y+t ' .
' - ﬂfo; tZ[fy I‘@o(g)ldg] dt .
l < (fo |2 (2) |2 dg) 2 z fo £73/2 g
i - a
E -19-




1/2

(1 o, 0)|” 2t )

1/2

([ 1ee0l )

1A

|

™ - (13)

Combining (11), (12) and (13) with (10) one finds that

_1_ 0 o QO(Y)
I 1r fy 0_2 +y - w)Z Qo( 2
8 /o ® . z /2 '
= 22 ( [ 1@ dg) | (14)

Now by a completely analogous procedure, one also has

e,y

llf +(Y K. (@) dw - —5— | ‘

1/2

< 8o ( f: EXCIR dg) | (15)

Finally (14) and (15) together with (9) yield:

sup Ve, y) - d;o(y)l <

-00 <L y(OO

thus completing the proof.

1/2

v (2 5] )
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The following lemma éompletes the ""constructive' process for the Z hypo-

thesized in Theorem 2 and also gives a range of applicable ¢ values.

LEMMA 3: Let the hypotheses and notation of Theorem 1 covering g(-) hold; i.e.,
gl eW,, @(w 8 Arg {G(iw) +§} ,a & min'(n --|<I>(w)|)> o v2 n-g/3and
w =inf{W ,l@(w)ls vfor|u|zw} Assume W_ > 0 and let

v v v

2

.2 ()
|

1

W, . /2
f |<I>'(<.o)| dw]
WV

>

Then for any ¢ in [0, o*) there is a v(*) in Ll[O,OO), with Laplace transforms Y(s),

"and a &> 0, such that

(i) Re {1 +Y(iw)} > 6>0
(ii) Re {[1+Y(iw+cr)][G(iw)+£-]} >8> 0. ' '

REMARK 4:  If ZeL is defined by

(Zo®) =xt) + [ "3t - 1) e ey d,
: o

then the following conditions are equivalent to (i) and (ii) above.

(i") Re{Z(iw - »0')}?. 6§>0

(ii') Re {Z(ico) -[G(iw) +%] }z 5> 0.

-21-
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Hence condition I of Theorem 2 is satisfied for all ¢ in (0, 0'*).

The'hypotheéis g(-)e Wk assures that Arg {G(iw) + i—}lies in the interval
(-m, m). If conclusions (i) and (ii) above are.to be fulfilled, then it is clearly
' necessary that Arg {1 + Y(iw)ﬁ lies in (-% ,%) and also
Arg { [1 + Y(iwto)] [Glw) + 1/k } lies in (- w/2, n/2). That these two conditions

are also sufficient for the validity of (i) and (ii) can be seen from the following.

F REMARK 5: If F(w) is a continuous complex-valued function on (- @, © ), F(w) }4 0,
\ ‘ I Arg {F(w)} |< m/2 and lelir_n’co F(w) exists and is a real contant greater than zero,
‘ then there is a constant § > 0 with the property that Re {F(w)} > 6.

Recalling that Arg{[1 + Y(iw+o)][Gliw) + 1] }=arg {1+ v0u+ o} +
Arg {G(ico) + l/k} , an initial attempt at constructing y(:) might be to employ
Lemma. 1 in order to find a y(')€L1(0,°°) with Arg {1 + Y(iw)} = - %Arg {G(iw) + 1%} .
With such a choice for y(-), both Arg {1 + Y(iw)} and Arg {1 + Y(iw)} +
arg {ctiw) +1/x}  (=-1/2 Arg {G(iw) + l/k})would lie in (-n/2, 7/2). The
construction which will be adopted here must differ from the choice of phase func-
tion suggested above for large w in order to meet the conditions required for
application of Lemmas 1 and 2; namely, that the phase function chosen and its

derivative must both have finite square integrals.
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PROOF OF LEMMA 3:

tiable real valued function defined on (Wv’ ) and satisfying:

For each € > 0 choose !e (w) a continuous, a.e., differen-

1
(W ) Arg {G(iw) + —}
- v’ _ K
(a') ‘t‘ (WV) - 2 - 2

(b) |l€(w)| = ¥ for all we (W ,)

® 2
(c) f Ile(“")| dw < © , and
w o

v

2

(d) fn |l€'(w)|2dw <&
W
Y .

linear from
3Wi + Wv
w = WV to wo(e) = —_;T—
with

le(w) =0 for w = wo(e).)

For any ¢ > 0, define

-2 L arg {Gaw ++}

..'_23...

(Such functions are easily constructable. In fact, Ie (w) may be chosen to be

for win [-Wv, WV]
for w>W
v

for o<W
v




and

By this construction it is assured that
™
|2, (w)|< u (16)
: . 1 T | . ,.
|<1>€(w)+Arg{G(w) +E}| < I an

Also for future reference the inequality

foolée'(w)lzdw s% f+%|¢'(w)|2dw+e2 (18)
- W

holds. }
It now follows by application of Lemma 1 that there is a Ye (+) in L (0,0) with

Laplace transform Y(s), 1 + Y (1w) # 0 any wand Arg { 1+ Y 1w)} = Qe(‘”)'

Remark 5 combined with (16) therefore yields:

Re {1 +Y€(iw)} > §()> 0

for some constant §(¢). This proves (i). In fact (i) holds with y(-) equal to any

Ve () chosen by the above procedure. The actual choice of Y, (-) which will be made

will be one corresponding to € sufficiently small so as to assure that (ii) also holds.

In order for (ii) to hold for y(-) equal to some Ve (-), it is sufficient, by
Remark 5, to show that

|arg {1+Y€(m+¢)}'+ S(w)| <3 . for ® << (19)

Now (19) may be rewritten as

|arg {1+ Y 6ot} -2 (@+8 (0 +2w] <]

for - < < (20)
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From Lemma 2 it follows that for all w

- : 2 1/2
Arg {1 +Y, (iw+o-)} -@e(w)l 5'163{‘-’ lt/‘wl @;(w)l dw] (21)

=00

and so a sufficient condition for (20) to hold is that

1/2 |
16‘/‘_’ [f |‘I>(w dw] + sup ' (W) +®(w) [< X (22)
€ 2
W< w< w
Ndw
<] -
sup |<I>€(w)+'1>(m)'= sup I (Zw)ls ﬂza
w, JwlsW w lw|2W
? N v ’ v
while ' ' - -
sup |<I>€(w)- &(w)|s  sup |2 @]+ sup |<I>(w)‘|
|w|>W w, |w|z W w, |wjzW
v v
Y _3v_nm-a
2 T2 7 2

It follows that

sup “I’E(w)-@(w) <I-a
=00 <, <0

Using this relation in conjunétion with inequalities (20) and (21), one finds that a
sufficient condition for (19) to hold is

-25-




/2
—__163‘1{‘_’ [f:|<p€'(w)|z dw:l +t< g

or

« 00

/e 2 1/2

16 Vo 0 | ! a

30 I:f lQE(w)I dw} < > (23)
‘ Therefore if ¢, is chosen equal to

(31ra) 2
16

"W 2
f "|¢:' (w)l dew

-W
v

as hypothesized in this lemma, then for any ¢, 0 < ¢ < Ty the inequality

holds.

But then if € is chosen sufficiently small, inequality (23) will hold by virtue of
(18). This means, on tracing through the above argument, that the Ve (*) corres-
onding to such a choice of € will be an acceptable choice for the y(-) in the state-
ment of this lemma; i.e., (i) and (ii) of the statement of this lemma hold for Y€ (s),

the Laplace transform of ¥ (-). This completes the proof.
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S. A FACTORIZATION LEMMA
In this section a necessary and sufficient condition for the factorization prop-
erty of n (+) as described in Theorem 2 will be derived. For convenience of

notation, a class 9% of real-valued functions is introduced.

DEFINITION: Let ¥ be the class of absolutely continuous real-valued functions
k(-) defined on [0,%) with each k(-) satisfying 0 < inf k(t) = sup k(t) < %,

LEMMA 4: Let k(-) e X be given and let o be a non-negative constant. The following

two statements are then equivalent:

(i) There is a constant K > 0 such that

k(t)

f Ik'(t’ - 20 |dt-20| € =

for allt > O. )
(ii) There are functions k+(-) and k_(-) both in K satisfying the following prop-
erties for allt= O;
(@) k(t) =k (t): k _(t)
(b) k (t) exp (-20t) is monotone non- 1ncreas1ng

(c) k_(t) is monotone non-decreasing.

It is somewhat simpler to write out the proof of the following equivalent version

of Lemma 4 (obtained by considering log k(-)).

LEMMA 4: Let £() be a real-valued absolutely continuous bounded (above and

" below) function of t, for t in [0,%0). Then the following two statements are equiv-

alent:
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(i') There is a constant K > 0 such that

- t
26t - K < f Il'(t)—Zcrl dt = 20t + K
(o]

for allt =z 0.

(ii') There are two real-valued absolutely continuous bounded (above and below)

. functions 1+(-) and { _(-), defined on [0,%), with the following properties
@@') £(-) = £,¢) + £ _()
dl+(t)
(b') P < 20 a.e. int
d4 _(t)
(c') a3 Z 0 a.e. int
PROOF OF LEMMA 4': Assume at first that (i') holds:

A t 1 - 1 -
Define £ (t) = £(0) + f 1'(t) +o !21 () 2¢] g

o

(23),
2 1o +ft Min {l'(t), 20"} dt
’ o
. and .
Lo a ft L'(t) - 20 +ZI£'(t) = 20l 4
o

(24)

t
ef Max (£'(t) - 20,0) dt.
[0}
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Then with these definitions it is easy to check that (a'), (b') and (c') hold.
What is left to be shown is that l+(-) and £ (-) are bounded functions.

But
.
£.(t) = £(t) + ot - Ef; |[£1¢) -2 0 |at
while
t
L (t) = £(t) - £(0) + %f lert) - 2 o] at - ot
o]

Assumption (i') and the fact that £(t) is bounded assure that 1+(-) and 1_(-) are

bounded functions and this completes the proof of (i') — (ii').

In the other direction assume (ii') holds. Then it follows that

de (t)
_d"t_ 2 Max (£'(t) - 20,0)

AR - 20) + |2t) - 26]
= - 73 = (25)

for almost allt = 0.

To see this, note that if (25) did not hold, there would exist a set of positive

measure on which

dt (t)

0 s —— < L11(t) - 2¢.

But

de (t et (t
s MO @w
dt dt dt e
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so that one would have

d1+(t)

df (t) de (t)
- < -
| 0= ~& dt dt 2o
! .
| - ' de  (t)
on some set of positive measure. This, of course, would imply that P > 20

on a sat of positive measure which would then violate (b'). Thus (25) is verified.

Now integrating both sides of (25) from 0 to t yields:

o

t
1_(6) - 1 (o) 2 2B L) gy y %foll'(t) ~2o|at

valid for allt = 0. Noting that both £ () and £(-) are bounded (above and below)

by assumption (ii'), the e-stima.te
t
f l!'(t) -2g¢{dt 2 20t + K
o

follows for some constant K> 0 and allt > O.

The inequality

¢

t
f I!'(t) - 2¢|dt 2 20t - K
o]

follows easily from the fact that

Max (£'(t) - 20,0) 2 L) - 20) % lee) - 20l

-30-
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is non-negative for almost allt > 0, With these remarks, the proof of (ii') — (i')

is complete.

COROLLARY 3: A necessary and sufficient condition for assumption 2 of Theorem

2 to hold is that either:

(a) thereis a K > 0 such that

1 ft| nt) ZIdt 2¢ | =
-f- n(t) - o - g =
‘ o n(t) (1 - T)
or else
(b) there is a K > 0 such that
lltftl a(t) o) + Zo“ dt -_20' <
o o1 - 5)

PROOF: Apply Lemma 4 to

n*(t) & n(t) (1 - 9—%1)-1

to get (a) or apply Lemma 4 to

(-28) b

_1_

n*(t)

In>

to get (b).
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CONCLUDING REMARKS

The techniques developed here show promise of eliminating the "multiplier"
-dependence from many recent stability results. In particular, investigations are
cdrréntly under way on problems involving monotone non-linearities (See [2]) with

a view towards obtaining geometric criteria there.
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